A variant on the graph parameters of Colin de Verdiere: Implications to the minimum rank of graphs

نویسندگان

  • Francesco Barioli
  • Shaun Fallat
  • Leslie Hogben
  • FRANCESCO BARIOLI
چکیده

For a given undirected graph G, the minimum rank of G is defined to be the smallest possible rank over all real symmetric matrices A whose (i, j)th entry is nonzero whenever i = j and {i, j} is an edge in G. Building upon recent work involving maximal coranks (or nullities) of certain symmetric matrices associated with a graph, a new parameter ξ is introduced that is based on the corank of a different but related class of symmetric matrices. For this new parameter some properties analogous to the ones possessed by the existing parameters are verified. In addition, an attempt is made to apply these properties associated with ξ to learn more about the minimum rank of graphs – the original motivation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela a Variant on the Graph Parameters of Colin De Verdière: Implications to the Minimum Rank of Graphs∗

For a given undirected graph G, the minimum rank of G is defined to be the smallest possible rank over all real symmetric matrices A whose (i, j)th entry is nonzero whenever i = j and {i, j} is an edge in G. Building upon recent work involving maximal coranks (or nullities) of certain symmetric matrices associated with a graph, a new parameter ξ is introduced that is based on the corank of a di...

متن کامل

Colin de Verdiere parameters of chordal graphs

The Colin de Verdière parameters, μ and ν, are defined to be the maximum nullity of certain real symmetric matrices associated with a given graph. In this work, both of these parameters are calculated for all chordal graphs. For ν the calculation is based solely on maximal cliques, while for μ the calculation depends on split subgraphs. For the case of μ our work extends some recent work on com...

متن کامل

Expected values of parameters associated with the minimum rank of a graph

We investigate the expected value of various graph parameters associated with the minimum rank of a graph, including minimum rank/maximum nullity and related Colin de Verdière-type parameters. Let G(v, p) denote the usual Erdős-Rényi random graph on v vertices with edge probability p. We obtain bounds for the expected value of the random variables mr(G(v, p)), M(G(v, p)), ν(G(v, p)) and ξ(G(v, ...

متن کامل

Note on Nordhaus-Gaddum Problems for Colin de Verdière type Parameters

We establish the bounds 43 6 bν 6 bξ 6 √ 2, where bν and bξ are the NordhausGaddum sum upper bound multipliers, i.e., ν(G)+ν(G) 6 bν |G| and ξ(G)+ξ(G) 6 bξ|G| for all graphs G, and ν and ξ are Colin de Verdière type graph parameters. The Nordhaus-Gaddum sum lower bound for ν and ξ is conjectured to be |G| − 2, and if these parameters are replaced by the maximum nullity M(G), this bound is calle...

متن کامل

Some results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs

Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005